Extensions 1→N→G→Q→1 with N=C9 and Q=C32×C6

Direct product G=N×Q with N=C9 and Q=C32×C6
dρLabelID
C33×C18486C3^3xC18486,250

Semidirect products G=N:Q with N=C9 and Q=C32×C6
extensionφ:Q→Aut NdρLabelID
C9⋊(C32×C6) = C32×C9⋊C6φ: C32×C6/C32C6 ⊆ Aut C954C9:(C3^2xC6)486,224
C92(C32×C6) = C3×C6×3- 1+2φ: C32×C6/C3×C6C3 ⊆ Aut C9162C9:2(C3^2xC6)486,252
C93(C32×C6) = D9×C33φ: C32×C6/C33C2 ⊆ Aut C9162C9:3(C3^2xC6)486,220

Non-split extensions G=N.Q with N=C9 and Q=C32×C6
extensionφ:Q→Aut NdρLabelID
C9.1(C32×C6) = C6×C9○He3φ: C32×C6/C3×C6C3 ⊆ Aut C9162C9.1(C3^2xC6)486,253
C9.2(C32×C6) = C2×3- 1+4φ: C32×C6/C3×C6C3 ⊆ Aut C9549C9.2(C3^2xC6)486,255
C9.3(C32×C6) = C6×C27⋊C3central extension (φ=1)162C9.3(C3^2xC6)486,208
C9.4(C32×C6) = C2×C27○He3central extension (φ=1)1623C9.4(C3^2xC6)486,209

׿
×
𝔽